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Dreams are sensory experiences occurring spontaneously during sleep. Their 
distribution during sleep is not homogeneous, as chey are more Frequent, 
vivid, and longer during rapid eye movement (REM) sleep. REM sleep 
rnight, therefore, constirute a permissive condition for the generation of 
dream experiences. 

Over the last decade, Eunctional brain imaging allowed us co characterize 
the distribution of regional cerebral activity during human REM sleep. The 
emerging picture reveals activation of the pons, the thalamus, temporo
occipital, and limbic/patalimbic areas (including arnygdala), along with a relative 
quiescence of dorsolateral pre frontal and inferior parietal cortiees. This pat
tern of activation offers new insights into the neural correlates of dreaming 
experience. For instance, amygdala activation is consistent with the predomi
nance of negative emûtions, anxiety. and fear in dream reports. Temporo
occipital activation is in keeping with a pervasiveness of visual dream con~ 
tent. Prefrontal deactivation might explain several cognitive impairments of 
the dreamer's mind relative to normal waking abüities. such as poor volun~ 
tary access to episodic memories, altered spatio~temporal orientation, defi~ 
dent working memory, attention and self-awareness, altered reasoning and 
decision-malting, including the usual lack of criticism toward bizarre ele
menes in dreams. Prefrontal deaceivation mighe also account for several char~ 
acteristics of the dream scenario, such as spatio-temporal ruscontinuity 
associated wieh contextual misbinrung. 
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INTRODUCTION 

Dreaming is experienced every night by most humans as multisensory 
mental representations occurring spontaneously during sleep, often organized 
in a narrative manner. Dreams are characterized by their perceptual (mostly 
visua! and auditory) and emotionally loaded content (including frequent 
threat-related content). They rypically appear bizarre because of the incon
gruiry, discontinuiry, and instabüiry of time, places, and persons (Hobson, 
Stickgold, & Pace-Schott, 1998; Schwartz & Maquet, 2002). Yet, they are 
usually taken as rea! by the dreamer. In a dream, it is, for example, not ,uspi
dous to us if we are suddenly able to fly or if a cat starts ralking proper Eng
lish. lndeed, the dream world is (mistakenly) experienced as rea!, very much 
like our waking perceptions and actions (Johnson, Kahan, & Raye, 1984). 
Sorne sdentists even think of this illusory feeling of rea!iry as a necessiry for 
certain functions of the dream (Revonsuo, 2000; Valli et a!., 2005). For 
example, Revonsuo (2000) and Valli (2005) have proposed that, by simulat
ing threatening events, the biologica! function of dreaming is to a!ford the 
rehearsa! of threat perception and avoidance, in a completely safe "virtua!" 
environment and without any immediate damaging repercussion. Finally, 
the memory of the dream is generally quite poor and labile as compared to 
memory for waking events. As Pace-Schott, Stickgold, and Hobson (J 997) 
suggested, the description of half an hour of waking life would be ten times 
longer than ail the dream reports from one night. 

The scientific study of dreaming constituees a tough but faseinating cha!
lenge. lndeed, the dreamer is the unique observer of his dream and, as any 
subjective experience. dream content is not accessible to direct (third-person) 
observation. Consequently, information about a dream is ohtained intro
spectively through memory recall. Severa! confounding factors may, therefore, 
affect the genuineness of dream reports such as forgetting. reconstruction mech
anisms, verbal description difficulties, and censorship (Schwartz & Maquer, 
2002). When studying dreams, one should a!ways remain aware of these limita
tions and use appropriate strategies to prevent them from hindering valuable 
dream information. 

The conception of dreams has slowly evolved through the centuries. In 
Greek antiquiry, dreams were divine messages delivered to humans to warn 
them abour upcoming disaseers or misfortune. However, Aristode challenged 
chis common belief by bringing down any seemingly prophetie dream con
tent to mere coincidence. He emphasized that dreams are endogenously gen
erated and arise from the amplification of cea! enema! stimulation 
occurring during sleep. During the second hal[ of the nineteenth century, 
severa! scientists conducted ingenious experimental studies on dreaming. 
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focusing on me phenomenological descriptive features of dreams ramer than 
meir meaning. They proposed meories about me cerebral mechanisms under
lying dreams mat are strikingly close to sorne recent meories (Schwartz, 
2000). This wave of dream studies was slowed down when me psychoanaIytic 
interpretation of drearns emerged. Indeed, more man 100 years ago, Freud 
believed that drearns were me expression of hallucinatory satisfaction of 
repressed desires or me "royal road to me unconscious" (Freud, 1900/1955). 
Then it was only in the 1950s mat a neurophysiologicaI marker of dreaming 
was described, leading to a renewed interest for the scientific srudy of drearn
ing. In 1953, Aserinsky and Kleitman (1953) described for me flfst time 
recurrent periods of rapid eye movements during sleep. Since mese periods 
were aIso characterized by high-frequency/low-amplirude elecrroencephaIo
graphic (EEG) activity and muscnlat aconia, mey were idenrified as a specific 
sleep stage called "Rapid-Eye-Movement sleep" (REM sleep) or paradoxicaI 
sleep (Jouvet, 1962). Critically, awakenings from this sleep stage were associ
ated wim a high probability of vivid dream reports (Dement & Kleitman, 
1957). This discovery shaped a new field of research for dreanùng: sleep was 
no longer considered as a homogeneous resring state but included periods of 
enhanced neurophysiological activiry underlying me production of dream 
experiences (Aserinsky & Kleitman, 1953). The generation of dreams was mus 
supposed co be restricted to REM sleep, but chis concept has changed since 
men as drearning aIso seems co occur during non-REM sleep (Antrobus, 
1983; Cicogna, Cavallero, & Bosinelli, 1991; Mannim, 2005; Solms, 2000). Ir 
is still discussed whemer dreaming mentation in REM and non-REM sleep 
depends on one cornmon set of processes or rather on twa separate generators 
(Foulkes, 1996; Nielsen, 2000). 

Yet, the study of drearns and REM sleep physiology remain closely assori
ated, because dreams during this sleep stage are reported much more fre
quently, are better recalled, longer, more emotionally charged and 
perceptually vivid, and they contain more bizarre features (Aserinsky & 
Kleitman, 1953; Hobson, Pace-Schott, & Stickgold, 2000). REM sleep neu
rophysiology is dominated by complex neuromodulatory changes (Hobson 
et al., 1998; Hobson et al., 2000). In cats and rodents, REM sleep is gener
ated by cholinergic input arising from brainstem nUclei located in the 
pedunculopontine tegrnentum (PPT) and laterodorsal tegrnentum (LOT) 
(Baghdoyan, Lydic, Callaway, & Hobson, 1989; Capece, Efange, & Lydic, 
1997; Darta, 1995; Hobson, Darta, Calvo, & Quattrochi, 1993; Kodama, 
Takahashi, & Honda, 1990; Velazquez-Moctezuma, Gillin, & Shiromani, 
1989; Velazquez-Moctezuma, Shalauta, Gillin, & Shiromani, 1991; 
Yamamoto, Mamelak, Quattrochi, & Hobson, 1990). These cholinergic 
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generators are mainly controlled by inhibition from aminergic neurotrans
mitters (noradrenalin [NA] and serotonin [5-HT]), which are repressed 
during REM sleep, leading to cholinergie firing increase (Gentili et al., 1996; 
Homer, Sanford, Annis, Pack, & Morrison, 1997; lmeri, De Simoni, Giglio, 
Clavenna, & Mancia, 1994; Leonard & Llinas, 1994; Nicholson & Pascoe, 
1991; Portas & McCarley, 1994; Singh & Mallick, 1996). Other neuromo
dulatory systems might also participate in REM sleep modulation, such as 
gamma-aminoburyric acid (GABA) (Nitz & Siegel 1997), nitric oxide 
(NO) (Leonard & Lydie, 1997), glutamate (Onoe & Sakai, 1995), glycine 
(Chase, Soja, & Morales, 1989), neuropeptides (Bourgin et al., 1997), as well 
as other non-pontine systems involving structures such as the basal forebrain 
(Szymusiak, 1995), hypothalamus (Lu et al., 2002), thalamus (Marini, lmeri, 
& Mancia, 1988; Marini, Gritti, & Mancia, 1992), amygdala (Sanford, 
Tejani-Butt, Ross, & Morrison, 1995), periaqueductal gtey area (Sastre, 
Buda, Kitahama, & Jouvet, 19%), and medulla (Chase & Morales, 1990). 

The funetion of dreaming is a source of intense debate and a fascinating 
topic in the field of cognitive neuroscience (for review see, Revonsuo, 2000). 
Although several theories daim that dreaming is simply a random by-product 
of REM physiology, others suggest it has quite important, if not vital, func-
tionaI signiflcance. . 

For example, Hobson and McCarley suggested that dreams merely result 
from the forebrain responding ta (and trying to interpret) random activa
tion initiated at the brainstem. or as a by-product related to "unlearning" in 
an otherwise overloaded brain (Crick & Mitchison, 1995; Hobson & 
McCarley, 1977). 

Other researchers have proposed that dreams might reflect active func
tions lilce reprocessing and further consolidation of nove! and (individually) 
relevant features encountered during previous waking experience. According 
ta these aurhors (Cipolli, Fagioli, Mazzetti, & T uozzi, 2004), the restructur
ing occurring during sleep and dreaming should be beneficial for long-term 
starage of freshly encoded information. By contrast, Jouvet proposed that 
dreaming involves the genetic reprogramming of cortical networks that 
might promote the maintenance of psychological individualiry despire 
potentially adverse influences from the waking experiences (Jouvet, 1998). 

More extreme views have suggested vital and adaptive funetions to 

dreams in the course of brain development and evolution. Extending the 
evolutionary hypothesis of the function of dreaming (that is, "threat simu
lating meory") from Revonsuo and colleagues (2000), Franklin and Zyphur 
(2005) proposed that REM sleep may be so prominent early in life because 
it might function as a "virtual rehearsal mechanism." For optimizing brain 
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development and connectivity, a young organism would benefit from adap
tively experiencing rich and vivid environments during dreams. 

Finally, following on psychoanalytical theories, others have argued that 
dreaming is a process of internai activation, arising from a person's affective 
and emotional histaty (Mancia, 2005). 

Over the last decades, the developmenr of neuroimaging techniques 
allowed researchers to investigate in a noninvasive way functional changes in 
brain activity across various experimental conditions. In the field of sleep 
research, positron emission tomography (PET) was the main technique used 
to assess the global and regional cerebral activity during the different sleep 
stages. When applied ta brain imaging, PET technique allows an assessment 
of cerebral activity using compounds labeled with positron-emitting isotopes. 
In sleep studies, different probes can be used, such as eSF)fluorodeoxyglu
cose ('sFDG), which is a marker of glucose metabolism, and oxygen-15-
labeled water (H/sO), which is a marker of blood flow. The neuroimaging 
data confirmed and extended sorne sleep physiological theories raised from 
animal data. Below, we first review the available functional neuroimaging 
studies that describe the pattern of regional cerebral activity during normal 
human REM sleep, as well as the likely activating neurophysiological mecha
nisms undedying this pattern of activity. Then, we discuss how these results 
could also be interpreted in more cognitive terms based on common dream 
features. This integrated view contributes ta the characterization of the neu
ral correlates of dreaming and may provide important elemenrs for the 
understanding of the organization and functions of dreaming. 

REM SLEEP PHYSIOLOGY VIEWED FROM 
A NEUROIMAGING PERSPECTIVE 

Electrophysiological data showed that REM sleep is characterized by sus
tained neuronal activity (Jones, 1991; Steriade & McCadey, 1990). Early 
neuroimaging results demonstrated that REM sleep also displays a global 
high-level of cerebral energy requirements (Maquet et al., 1990) and cerebral 
blood flow (Madsen et al., 1991; Madsen & Vorstrup, 1991), which are 
comparable ta wakefulness values. Subsequent neuroimaging studies, moscly 
co';ducted with PET, described REM sleep regional patterns of activity com
pared ta wakefulness and/or non-REM sleep (Braun et al., 1997; Maquet 
et al., 1996; Maquet et al., 2000; Maquet et al., 2005; Nofzinger, Mintun, 
Wiseman, Kupfer, & Moore, 1997) (see Figure 5.I). The resulting maps 
showed a distribution of brain areas that displayed a higher (activation) or 



100 Biologie,,1 Aspects 

FIGURE 5.1 
Schematic representation of the functional neuroanatomy of nonnal human 
REM sleep. Regions with dark shading are those in which there is a relative 
increase in neural activity associated with REM sleep j those with light shading 
show relative decreases in neural activicy during REM sleep. Arrows show the 
proposed relationships between brain areas and severa! dreaming features, which 
m.y be accounted for by regional patterns of .ctivity dnring REM sleep. (a) lat
eral view, (b) medial view; (c) ventral view. A: amygdal.; B: basal forebrain; 
Ca: anterior cingulate gyms; Cp: posterior cingulate gyms and precuneus; F: 
dorsoJateral prefrontal cortex {middle and inferior frontal gyri)j H: hypothala
mus; M: motor cortex; P: parietal cortex (inferior parietal lobule); PH: para
hippocampical gyms; 0: occipital-lateraI cortex; Th: thalamus; T-O: temporo
occipital extrastriate cortex; TP: pontine tegmentum. 

(b) 

Reduced sensiti<1ityl:o 
exlem31 salÎent stimuli 

Source: Reprinted from Trends in Cognitive Sdences, volume 6:1, S. Schwartz and P. Maquet, "Sleep 
imaging and the neuro-psychological assessment of dreams," pp. 23-30. Copyright 2002, with permis
sion from Elsevier. 

lower (de.ccivation) regional cerebral blood flow (rCBF) during REM sleep 
in comparison to wakefulness and/or non-REM sleep. Regional activations 
were found in the pontine tegmentum, thalamus, basal forebrain, amygdala, 
hippocampus. anterior cingulate cortex, and temporo-occipital areas. Regional 
deactivations were found in the dorsolateral prefrontal correx (DLPF), poste
rior cingulate gyms. precuneus. and the inferior parietal cortex. 



llIIlan 

lative 
ading 

" the 
"hich 
,) 1at
Jrain; 

lSj F: 
thala
para
poro-

, "Sleep 
permis-

sleep 
ltions 
gdala, 
gional 
poste-

~euroimaging of REM SJeep ômd Dreaming 10 l 

Reported activation of pontine tegmentum, thalamic nuclei, and basal fore
brain (Braun et al., 1997; Maquet et al_, 1996) is in agreement with REM 
sleep-generation mechanisms in animals (Datta, 1995, 1997; Marini et aL, 
1992)_ Namely, REM sleep is believed to be generated by cholinergie pro
cesses arising from brainstem structures (PPT and LDT) that mediate wide
spread cortical activation via a dorsal pathway innervating the thalamus and 
a ventral pachway innervating che basal forebrain (Steriade & McCadey, 
2005)_ 

A major finding from PET studies is che demonstration chat limbic and 
paralimbic structures, including amygdaloid complexes, hippocampal forma
tion, and anterior cingulace cortex, were consistendy activated during REM 
sleep in humans (Braun et al., 1997; Maquet et al., 1996; Nofzinger et al., 
1997). This result is also in line wich earlier studies in animals showing a 
high regional glucose merabolism in che limbic system of rats (Rarnm & 
Frost, 1983) and cats (Lydie et al., 1991; Ramm & Frost, 1986). Amygdala 
is known tO play a key role in REM sleep modulation. For instance, in cats 
the stimulation of the central nucleus of amygdaloid complexes, either by 
electrical stimulation (Calvo, Badillo, Morales-Ramirez, & Palacios-Salas, 
1987) or by injections of a cholinergie agonist (Calvo, Simon-Arceo, & 

Fernandez-Mas, 1996) enhances REM sleep activity. Besides che amygdala, che 
hippocampal formation is also activated during REM sleep in sorne studies 
(Nofzinger et al., 1997), suggesting an activation of che whole limbic system 
racher chan che amygdala alone. The activation of che amygdala and che hippo
campus, which are boch involved in memoty processing (Bechara et al., 1995), 
also suggesrs memoty consolidation processes during REM sleep. N umerous 
data support che involvement of sleep in memoty (for review, see Dang-Vu, 
Desseilles, Peigneux, & Maquet, 2006; Maquet, 2001; Maquet, Smich, & Stick
gold, 2003; Peigneux, Laureys, Delbeuck, & Maquet, 2001a; Rauchs, Desgranges, 
Foret, & Eustache, 2005), but che relationships wich dream content remain ta 

be demonstrated. 
Activated cortical temporo-occipital areas encompass the inferior temporal 

COrtex and the fusiform gyrus (Braun et al., 1997), which belong ta visual 
association areas (extrastriate cortex), but chey do not indude the primary 
visual cortex (striate cortex). Furthermore, striate and extrasrriate cordees 
were shown to be functionally dissociated during REM sleep (Braun et al., 
1998): extrastriate eortex activation is signifieantly eorrelated with striate 
cortex deactivation during REM sleep, whereas their activities are usually 
positively correlated during wakefulness. This dissociation between visual 
association areas and primary visual areas seems to be a hallmark of REM 
sleep and has led Braun and colleagues ta hypothesize that REM sleep allows 
internai information processing (between extrastriate areas and their 



102 Biological Aspects 

paralimbic projections, both activated during REM sleep) in a closed system 
russociated from interactions with the environment (via striate cortex and 
prefrontal cortex, both deactivated during REM sleep) (Braun et al., 1998). 

Deactivated areas during REM sleep were first found in the DLPF, the 
precuneus, the posterior cingulate cortex, and the parietal cortex (Braun et al., 
1997; Maquet et al., 1996). A recent PET study, however, showed that only 
parts of the parietal and DLPF cortices are hypoactive during REM sleep 
when compared ta wakefulness (Maquet et al., 2005): the temporo-parietal 
region, the inferior parietal lobule, and the inferior and middle frontal gyms 
of the DLPF. Conversely, activiry in the superior parietal lobe and in the 
superior and medial prefrontal cortex is not different from wakihg leve!. 
The neurophysiological mechanisms underlying this functional segregation 
are still hypothetical. The amygdala might play a role in this cortical map
ping: in monkeys, the amygdala sends abundant projections ta the extrastri
ace and ancerior cingulate conices, which are activated during human REM 
sleep, but sends only sparse Ot indirect projections ta the parietal cortex and 
DLPF, which are deactivated during REM sleep (Amaral & Price, 1984). 
These data suggest that the amygdala might "orchestrate" cortical activiry 
duting REM sleep. In line with this hypothesis, PET data also showed lUnc
tional interactions between the amygdala and the temporal cortex, whereby 
amygdala activiry was significantly and positively correlated with activiry in 
the ipsilateral temporal cortex during REM sleep, but not during other states 
of vigilance (Maquet & Phillips, 1998). One proposed function for this 
amygdalo-cortical network may be the selective processing of emotionally
relevant memories during REM sleep (Maquet et al., 1996). 

In animals, rapid eye movements during REM sleep are closely related to 
the occurrence of the so-called ponto-geniculo-occipital (PGO) waves. These 
PGO waves are bioelectrical phasic potentials occurring during the transition 
from non-REM sleep te REM sleep or during REM sleep itself (Callaway, 
Lydic, Baghdoyan, & Hobson, 1987). They are observed at many locations 
in the animal brain (Hobson, 1964), but most easily recorded in the pons 
(Jouvet, 1967), the lateral geniculate bodies of the thalamus (Mikiten, 
Niebyl, & Hendley, 1961) and the occipital COrtex (Mouret, Jeannerod, & 

Jouvet, 1963). PGO waves might have important functional roles, such as 
the promotion of brain development and the facilitation of brain plasticiry 
(Datta, 1999). There is also sorne evidence that PGO waves may exist in 
humans, as suggested by direct intracerebral recordings in epileptic parients 
(Salzarule et al., 1975), surface EEG (Salzarule et al., 1975), and magnetoen
cephalography (MEG) (Inoue, Saha, & Musha, 1999). A human PET study 
also found correlations during REM sleep, but not duting walcefulness, 
berween spontaneous eye movements and rCBP in the occipital cortex and 
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the lateral geniculate bodies of the thalamus, giving futther support for the 
existence of PGO-like activities during REM sleep in humans (Peigneux, 
et al., 2001b). This finding was recencly corroborated by a functional mag
netic resonance imaging (fMRI) study (Wehrle et al., 2005). 

Overall, neuroimaging srudies have shown that the functional neuroanat
orny (Braun et al., 1997; Maquet et al., 1996; Maquet et aL, 2005; Nofzinger 
et al., 1997) but also the functional interactions between brain areas (Braun 
et al., 1998; Maquet & Phillips, 1998) were signincancly different during 
REM sleep compared to walrefulness and to other sleep stages. These pat
terns of activity contribure to build a mode! of REM sleep physiology inte
grating human and animal data: (l) REM sleep is generated by processes 
arising from the pons and projecting to the cortex via the thalamus and the 
basal forebrain. (2) The limbic/paralimbic structures, moscly the amygdala, 
may serve as important modulators of internally-generated cortical input. 
(3) The hallmark of this segregated cortical activity is the activation of 
rempore-occipital visual association areas, contrasnng with DLPF and inferior 
parietal deactivations. (4) The resulting network may be shaped by PGO-like 
activities and could underlie important functions such as brain plasticity and 
memory. 

DREAMING VIEWED FROM A NEUROL,"GING PERSPECTIVE: 
INTEGRATION OF REM SLEEP CEREBRAL MAPPING 
AND MAJOR DREMI FEATURES 

The previous maps reflect sorne aspects of REM sleep physiology, but 
may also convey infurmation about the neural basis of dreaming. lndeed, 
the functional patterns of cerebral activity during REM sleep can be inter
preted in the light of common features of dream content, and tberefore 
potentially account fur the generation of oneiric activity (see Figure 5.1). 

Dream reports usually include different sensoty modalities, largely domi
nated by visual (close to 100 percent) and auditory (40 to 60 percent) per
cepts, whereas movement and tactile sensations (15 to 30 percent) or smell 
and taste (Iess than 1 percent) are much less frequent (Strauch, Meier, & 

Foulkes, 1996). The occipito-temporal activation during REM sleep may 
underpin these perceptual aspects of dreams, consistencly dominated by 
visual and auditoty e!ements (Braun et al., 1997). Accordingly, cessation of 
visual dream imagety was reported for patients with occipito-temporal 
lesions (Solms, 1997). 

Dream content is aIso characterized by the prominence of emotions, and 
especially negative emotions such as fear and anxiety (Strauch et al., 1996). 
Responses to threatening stimuli or stressful situations are modulated by the 
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amygdala during wakefulness (Sah, Faber, Lopez, & Power, 2003). The higb 
limbic-and amygdalar-activity during REM sleep may thus underlie the 
emotional intensity occurring during drearns (Maquet et al., 1996). More
over, PET data have shown positive functional interactions berw-een amyg
dala and occipito-remporal cortices during REM sleep (Maquet & Phillips, 
1998), while a recent fMRI study has found a positive relationship between 
the emotional load of visual stimuli and the functional activity in both 
arnygdala and infero-temporal cortex (Sabatinelli, Bradley, Fitzsimmons, & 
Lang, 2005). Together, these data suggest that the emotional experience dur
ing dreams might involve specifie brain networks encompassing the amyg-
dala and the occipito-temporal cortex. ' 

The regional hypoactivity patterns during REM sleep, and especially the 
deactivation of parts of the prefrontal and parietal cortex (Maquet et al., 
2005), have been proposed to explain several other dreaming features such 
as the uncritical acceptance of bizarre dream content, the alteration in time 
perception, the delusional belief of being awake during drearns, and the 
amnesia at awakening (Hobson et al., 1998). As discussed below, these deac
tivations could also account for the discontinuiry and incongruiry of dream 
content, the lack of control on the dreaming scenario, the fragmented recall 
of dreaming episoruc elements, the reduced sensitivity of the dreaming'narra
tive ta external information, and the lack of distinction between first- and 
third-person perspectives in mind representation during dreaming (Maquet 
et al., 2005). 

The prefrontal COrtex can be functionally divided in distinct subregions, 
each of them underlying the monitoring of specific cognitive processes during 
wakefulness (Koechlin, Ody, & Kouneiher, 2003). In this model, the DLPF 
areas deactivated during REM sleep (Maquet et al., 2005) correspond to the 
prefrontal subregions involved in the selection of stimulus-response associa
tions according to contextual signals, past evenrs, and internal goals. The 
decreased activiry of these areas would, therefore, prevent the brain from 
supervising the meaningful integration and continuity of dream information 
with respect to waking routines, physical rules, and social conventions. le 
may also explain the dreamer' s failure to organize his/her mental representa
tion toward specifie goals or ta control the flow of dream events. 

During wakefulness, the retrieval of episodic memory, which refers to the 
ability to recollect personally experienced events anchored within a particular 
spatio-temporal context (Tulving, 1983), has been shown to involve the 
activation of lareral and inferiot pte frontal cortices (Buckner, Wheeler, & 
Sheridan, 2001; Cabeza & Nyberg, 2000; Fletcher & Henson, 2001; Rugg 
& Wilding, 2000; Rugg, Otten, & Henson, 2002), which are typically deac
tivated during REM sleep (Maquet et al., 2005). Ir is indeed believed that 
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prefrontal areas participate in the processing of information retrieved from 
episodic memory; for instance, by checking its accuraey and completeness 
(Maquet et al., 2005). The hypoactiviry of rhese regions during REM sleep 
is in line with the demonstration that, although 65 percent of citeam reports 
conrain residues of previous waking activity, only 1.4 percent of [hem are 
considered as representing the replay of full memory episodes (Fosse, Fosse, 
Hobson, & Stickgold, 2003). In orher words, the dreamer reactivates epi
sodic e1ements in a fragmented fashion (probably via the activation of the 
hippocampus and posterior cortical areas), but is unable to integrate the 
details of past events into an identifiable Iife episode because of the deacciva
tion of rhe DLPF (Maquet et al., 2005; Schwartz, 2003). 

The DLPF (inferior and middle frontal gyri) and rhe inferior parietal 
lobule, borh deactivated during REM sleep, are included in the ventral atten
tional network (Corberta & Shulman, 2002). This network acts as an alert
ing mechanism mat is specialized in the detection of salient, unexpected, 
behaviorally relevant stimuli and helps to reorient the focus of attention 
toward the incoming stimulus (Corbetta, Kincade, Ollinger, McAvoy, & 

Shulman, 2000). A relative quiescence of the ventral artentional network 
during REM sleep might be induced by the decrease of noradrenergic tone, 
given rhat rhe locus coeruleus sends heavy projections to rhe infetior parietal 
cortex (Morrison & Fooœ, 1986) and also participates in selective attention, 
especially to salient and unexpected stimuli (Aston-Jones & Rajkowski, 
2000). These functional patterns then predict rhat the dream narrative, 
reported afrer awakening from REM sleep, would hardly be modified by 
external stimulation, even if behaviorally relevant (Maquet et al., 2005). This 
view is supported by observations describing that external stimuli delivered 
during REM sleep are drher ignored or automatically incorporated into the 
dream narrative, instead of intermpting the flow of the dream storyline 
(Burton, Harsh, & Badia, 1988; Foulkes, 1966). 

The ability ta attribute intentions, thoughts, and feelings to oneself and 
to others is commonly referred to as the "Theory of Mind." Instances of 
mind representation appear in dreams: the dreaming rnind creates characters 
and attributes thoughts, emotions, and intentions to those characters (Kahn 
& Hobson, 2005). Neuroimaging studies of theory of mind tasks during 
w~efulness have dernonstrated a consistent involvement of the medial pre
frontal cortex (MPF) (Frith & Frith, 2003; Gallagher & Frirh, 2003; Harris, 
Todorov, & Fiske, 2005). While the DLPF is deactivated during REM sleep, 
rhe MPF has been shown to remain as active during REM sleep as during 
wakefulness (Maquet et al., 2005). This stands in contrast wirh its signifi
cant deactivation during non-REM sleep (Dang-Vu et al., 2005; Maquet 
et al., 1997; Maquet et al., 2005). The similar leve! of activity in rhe MPF 
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during REM sleep and wakefulness could therefore contribute to the persis
tence of the ability to represent others' mind during REM sleep dreaming. 
On the other hand, the inferior parietal lobule and temporo-parietal junc
tion would be involved in the distinction of first- versus third-person perspec
tives in the representation of actions, thoughrs. and emotions during 
wakefulness (Chaminade & Decety, 2002; Farrer et al., 2003; Ruby & Decety, 
2001; Ruby & Decety, 2003, 2004). Contrasting with the MPF preserved 
activity, the hypoactivity of these parietal areas would predict a decrease of the 
ability to distinguish the perspective of others as compared ta our own during 
REM sleep and dreaming. Accordingly, dream reports show that the self can 
participate to the dream scenario both in a fim-person (the self sees and acts) 
and in a third-person perspecrive (the dreamer sees the self acting in the 
dream) (Maquet et al, 2005). 

CONCLUSION 

Over the last decade, neuroimaging studies have successfully described the 
distribntion of brain activity across the sleep-wake cycle. When compared to 
non-REM sleep, REM sleep is characterized by an overall elevated level of 
activity, together with a specifie pattern of regional brain activations' 'and 
deactivations. This functional mapping of human REM sleep also allowed 
confirming theories of REM sleep neurophysiology derived from animal 
experiments. Ir has also been proposed that the cerebral correlates of REM 
sleep could underpin sorne important dreaming characteristics, including the 
predominance of threat-related emotions and visual percept. the 10ss of ori· 
entational stability and volitional control, the fragmented episodic memoty 
recall, the reduced sensitivity to external relevant information, as weil as the 
possibility of attributing feelings and goals to other characters in the dream. 

To further improve the accuracy of the neural correlates of dreaming, 
future functional brain imaging studies should be combined with refined 

neuropsychological analysis of dream reports (Schwartz & Maquet, 2002). 
Dreams are indeed multifarious, onen bizarre. and cannot be reduced to a 
list of broad and typical sensoty or cognitive features. Some specifie and 
bizarre but common dream fearures of normal human sleep resemble dinical 
signs of neuropsychological syndromes resulting from focal brain damages, 
thus potentially predicting the tapography of the corresponding brain func
tional changes (Schwartz & Maquet, 2002). On the basis of these observa
tions, it has been proposed to quantiry and categorize the dream narrative in 
terms of different perceptual, emotional, or bizarre elements to provide use
ful constraints to the analysis and interpretation of future REM sleep data 
(Schwartz & Maquet, 2002). Perhaps a special type of dreaming during 
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which ehe dreamer is conscious of being in a dream ("lucid drean1ing") 
might provide an interesting test ease for future neuroimaging sturues 
(LaBerge & DeGracia, 2000). The fact that lucid dreatners can remember to 
perform predetermined actions during a dream might allow assessing the 
neural correlates of a large variety of dreatning features. Non-REM sleep 
dreaming should also be investigated in upcoming dedicated studies, and ehe 
diffèrences (or similarities) between REM on non-REM dreaming mentation 
should be furrher clarified. 

The reviewed neurophysiological and neuroimaging research on REM 
sleep offers an increasingly detailed picrure of ehe cerebral correlates of 
dreaming, which may finally bring significant insig\1t into dreaming mecha
nisms and possible funetions. 
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