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Dreams are sensory experiences occurring spontancously during sleep. Their
distribution during sleep is not homogeneous, as they are more frequent,
vivid, and longer during rapid eye movement (REM) sleep. REM sleep
might, therefore, constitute a permissive condition for the generation of
dream experiences.

Over the last decade, functional brain imaging allowed us to characterize
the distribution of regional cerebral activity during human REM sleep. The
emerging picture reveals activation of the pons, the thalamus, temporo-
occipital, and limbic/paralimbic areas (including amygdala), along with a relative
quiescence of dorsolateral prefrontal and inferior parietal cortices. This pat-
tern of activation offers new insights into the neural correlates of dreaming
experience. For instance, amygdala activation is consistent with the predomi-
nance of negative emotions, anxiety, and fear in dream reports. Temporo-
occipital activation is in keeping with a pervasiveness of visual dream con-
tent. Prefroncal deactivation might explain several cognitive impairments of
the dreamer’s mind relative to normal waking abilities, such as poor volun-
tary access to episodic memories, altered spatio-temporal orientation, defi-
cient working memory, attention and self-awareness, altered reasoning and
decision-making, including the usual lack of criticism toward bizarre ele-
ments in dreams. Prefrontal deactivation mighe also account for several char-
acteristics of the dream scenario, such as spatio-temporal discontinuity
associated with contextual misbinding,
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INTRODUCTION

Dreaming is experienced every night by most humans as multisensory
mental representations occurring spontancously during sleep, often organized
in a narrative manner. Dreams are characterized by their perceptual (mostly
visual and auditory) and emotionally loaded content (including frequent
threat-related content). They typically appear bizarre because of the incon-
gruity, discontinuity, and instability of time, places, and persons (Hobson,
Stickgold, & Pace-Schott, 1998; Schwartz & Maquet, 2002). Yet, they are
usually taken as real by the dreamer. In a dream, it is, for example, not suspi-
cious to us if we are suddenly able to fly or if a cat starts talking proper Eng-
lish. Indeed, the dream world is (mistakcnly) experienced as real, very much
like our waking perceptions and actions (Johnson, Kahan, & Raye, 1984).
Some scientists even think of this illusory feeling of reality as a necessity for
certain functions of the dream (Revonsuo, 2000; Valli et al., 2005). For
example, Revonsuo (2000) and Valli (2005) have proposed that, by simulat-
ing threatening events, the biological function of dreaming is to afford the
rehearsal of threat perception and avoidance, in a completely safe “virtual”
environment and without any immediate damaging repercussion. Finally,
the memory of the dream is generally quite poor and labile as compared to
memory for waking events. As Pace-Schott, Stickgold, and Hobson (1997)
suggested, the description of half an hour of waking life would be ten times
longer than all the dream reports from one night.

The scientific study of dreaming constitutes a tough but fascinating chal-
lenge. Indeed, the dreamer is the unique observer of his dream and, as any
subjective experience, dream content is not accessible to direct (third-person)
observation. Consequently, information about a dream is obtained intro-
spectively through memory recall. Several confounding factors may, therefore,
affect the genuineness of dream reports such as forgerting, reconstruction mech-
anisms, verbal description difficulties, and censorship (Schwartz & Magquet,
2002). When studying dreams, one should always remain aware of these limita-
tions and use appropriate strategies to prevent them from hindering valuable
dream information.

The conception of dreams has slowly evolved through the centuries. In
Greek antiquity, dreams were divine messages delivered to humans to wamn
them about upcoming disasters or misfortune. However, Aristotle challenged
this common belief by bringing down any seemingly prophetic dream con-
tent to mere coincidence. He emphasized that dreams are endogenously gen- :
erated and arise from the amplification of real external stimulaton |
occurring during sleep. During the second half of the nineteenth century,
several scientists conducted ingenious experimental studies on dreaming,
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focusing on the phenomenological descriptive features of dreams rather than

their meaning, They proposed theories about the cerebral mechanisms under-

lying dreams that are strikingly close to some recent theories (Schwarez,

2000). This wave of dream studies was slowed down when the psychoanalytic

interpretation of dreams emerged. Indeed, more than 100 years ago, Freud

believed that dreams were the expression of hallucinatory satisfaction of
repressed desires or the “royal road o the unconscious” (Freud, 1900/1955).

Then it was only in the 1950s that a neurophysiological marker of dreaming

was described, leading to a renewed interest for the scientific study of dream-

ing. In 1953, Aserinsky and Kleitman (1953) described for the first time

recurrent periods of rapid eye movements during sleep. Since these periods

were also characterized by high-frequency/low-amplitude electroencephalo-

graphic (EEG) activity and muscular atonia, they were identified as a specific
sleep stage called “Rapid-Eye-Movement sleep” (REM sleep) or paradoxical

sleep (Jouvet, 1962). Ciritically, awakenings from this sleep stage were associ-
ated with a high probability of vivid dream reports (Dement & Kleitman,

1957). This discovery shaped a new field of research for dreaming; sleep was

no longer considered as a homogencous resting state but included periods of
enhanced neurophysiological activity underlying the production of dream

experiences {Aserinsky & Kleitman, 1953). The generation of dreams was thus
supposed to be restricted to REM sleep, but this concept has changed since
then as dreaming also seems to occur during non-REM sleep (Antrobus,
1983; Cicogna, Cavallero, & Bosinelli, 1991; Mannim, 2005; Solms, 2000). It

is still discussed whether dreaming mentation in REM and non-REM sleep

depends on one common set of processes or rather on two separate generators
{Foulkes, 1996; Nielsen, 2000).

Yet, the study of dreams and REM sleep physiology remain closely associ-
ated, because dreams during this sleep stage are reported much more fre-
quently, are better recalled, longer, more emotionally charged and
perceptually vivid, and they contain more bizarre features (Aserinsky &
Kleitman, 1953; Hobson, Pace-Schott, & Stickgold, 2000). REM sleep neu-
rophysiology is dominated by complex neuromodulatory changes (Hobson
et al., 1998; Hobson et al., 2000). In cats and rodents, REM sleep is gener-
ated by cholinergic input arising from brainstem nuclei located in the
pedunculopontine tegmentum (PPT) and laterodorsal tegmentum (LDT)
(Baghdoyan, Lydic, Callaway, & Hobson, 1989; Capece, Efange, & Lydic,
1997; Datta, 1995; Hobson, Datta, Calvo, & Quattrochi, 1993; Kodama,
Takahashi, & Honda, 1990; Velazquez-Moctezuma, Gillin, & Shiromani,
1989; Velazquez-Moctezuma, Shalauta, Gillin, &  Shiromani, 1991;
Yamamoto, Mamelak, Quattrochi, & Hobson, 1990). These cholinergic
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generators are mainly controlled by inhibition from aminergic neurotrans-
mitters (noradrenalin [NA] and serotonin [5-HT]}), which are repressed
during REM sleep, leading to cholinergic firing increase (Gentili et al,, 1996;
Hotner, Sanford, Annis, Pack, & Morrison, 1997; Imeri, De Simoni, Giglio,
Clavenna, & Mancia, 1994; Leonard 8 Llinas, 1994; Nicholson & Pascoe,
1991; Portas & McCatley, 1994; Singh 8 Mallick, 1996). Other neuromo-
dulatory systems might also participate in REM sleep modulation, such as
gamma-aminobutyric acid (GABA) (Nitz & Siegel, 1997), nitric oxide
(NO) (Leonard & Lydic, 1997), glutamate (Onoe & Sakai, 1995), glycine
{Chase, Soja, & Morales, 1989), neuropeptides (Bourgin et al,, 1997), as well
as other non-pontine systems involving structures such as the basal forebrain
(Szymusiak, 1995), hypothalamus (Lu et al, 2002), thalamus (Marini, Imeri,
& Mancia, 1988; Marini, Gritti, & Mancia, 1992), amygdala (Sanford,
Tejani-Butr, Ross, & Morrison, 1995), periaqueductal grey area (Sastre,
Buda, Kirahama, & Jouvet, 1996), and medulla (Chase & Morales, 1990).

The function of dreaming is a source of intense debate and a fascinating
topic in the field of cognitive neuroscience (for review see, Revonsuo, 2000).
Although several theories claim that dreaming is simply a random by-product
of REM physiology, others suggest it has quite importane, if not vital, fune-
tional significance. )

For example, Hobson and McCarley suggested that dreams merely result
from the forebrain responding to (and trying to interpret) random activa-
tion initiated at the brainstem, or as a by-product related to “unlearning” in
an otherwise overloaded brain (Crick & Mirchison, 1995; Hobson &
McCarley, 1977).

Other researchers have proposed thac dreams might reflect active func-
tions like reprocessing and further consolidation of novel and (individually)
relevant features encountered during previous waking experience. According
to these authors (Cipolli, Fagioli, Mazzetti, & Tuozzi, 2004), the restructur-
ing occurring during sleep and dreaming should be beneficial for long-term
storage of freshly encoded information. By contrast, Jouvet proposed that
dreaming involves the genetic reprogramming of cortical networks that
might promote the maintenance of psychological individuality despite
potentially adverse influences from the waking experiences ( Jouver, 1998).

More extreme views have suggested vital and adaptive functions to
dreams in the course of brain development and evolution. Extending the
evolutionary hypothesis of the function of dreaming (thac is, “threat simu-
lating theory”) from Revonsuo and colleagues (2000), Franklin and Zyphur
(2005) proposed that REM sleep may be so prominent early in life because
it might function as a “virtual rehearsal mechanism.” For optimizing brain
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development and connectivity, a young organism would benefit from adap-
tively experiencing rich and vivid environments during dreams.

Finally, following on psychoanalytical theories, others have argued that
dreaming is a process of internal activation, arising from a person’s affective
and emotional history (Mancia, 2005).

Over the last decades, the development of neurcimaging techniques
allowed researchers to investigate in a noninvasive way functional changes in
brain activicy across various experimental conditions. In the field of sleep
research, positron emission tomography (PET) was the main technique used
to assess the global and regional cerebral activity during the different sleep
stages. When applied to brain imaging, PET technique allows an assessment
of cerebral activity using compounds labeled with positron-emitting isotopes.
In sleep studies, different probes can be used, such as [ISF]ﬂuorodeoxyglu—
cose ("°FDG), which is a marker of glucose metabolism, and oxygen-15-
labeled water (H;'*0), which is a marker of blood flow. The neuroimaging
data confirmed and extended some sleep physiological theories raised from
animal data. Below, we first review the available functional neuroimaging
studies that describe the pattern of regional cerebral activity during normal
human REM sleep, as well as the likely activating neurophysiological mecha-
nisms underlying this pattern of activity. Then, we discuss how these resuls
could also be interpreted in more cognitive terms based on common dream
features. This integrated view contributes to the characterization of the neu-
ral correlates of dreaming and may provide important elements for the
understanding of the organization and functions of dreaming.

REM SLEEP PHYSIOLOGY VIEWED FROM
A NEUROIMAGING PERSPECTIVE

Electrophysiological data showed that REM sleep is characterized by sus-
tained neuronal activity (Jones, 1991; Steriade & McCarley, 1990). Early
neuroimaging results demonscrated that REM sleep also displays a global
high-level of cerebral energy requirements (Maquet et al,, 1990} and cerebral
blood flow (Madsen et al, 1991; Madsen & Vorstrup, 1991), which are
comparable to wakefulness values. Subsequent neuroimaging studies, mostly
conducted with PET, described REM sleep regional patterns of activity com-
pared to wakefulness and/or non-REM sleep (Braun et al, 1997; Magquet
et al, 1996; Maquet et al, 2000; Maquet et al,, 2005; Nofzinger, Mintun,
Wiseman, Kupfer, & Moore, 1997) (see Figure 5.1). The resulting maps
showed a distribution of brain areas that displayed a higher (activation) or
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FIGURE 5.1

Schematic representation of the functional newnroanatomy of normal human
REM slecp. Regions with dark shading are those in which there is a relative
increase in neural activity assoctated with REM sleep; those with light shading
show relative decreases in neural activicy during REM sleep. Arrows show the
proposed relationships between brain areas and several dreaming features, which
may be accounted for by regional patterns of activity during REM sleep. (a) lat-
eral view; (b) medial view; (¢} ventral view. A: amygdala; B: basal forebrain;
Ca: anterior cingulate gyrus; Cp: posterior cingulate gyrus and precuneus; F:
dorsolateral prefrontal cortex {mijddle and inferior frontal gyri); H: hypothala-
mus; M: motor cortex; P: parietal cortex (inferior parietal lobule}; PH: para-
hippocampical gyrus; O: occipital-lateral cortex; Th: thalamus; T-O: temporo-
occipital extrastriate cortex; TP: pontine tegmentum,
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lower (deactivarion) regional cerebral blood flow (sCBF) during REM sleep
in comparison to wakefulness and/or non-REM slecp. Regional activations
were found in the pontine tegmentum, thalamus, basal forebrain, amygdala,
hippocampus, anterior cingulate cortex, and temporo-occipital areas. Regional
deactivations were found in the dorsolateral prefrontal cortex (DLPF), poste-
rior cingulate gyrus, precuneus, and the inferior parietal cortex.
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Reported activation of pontine tregmentum, thalamic nuclei, and basal fore-
brain (Braun et al, 1997; Maquet et al, 1996) is in agreement with REM
sleep-generation mechanisms in animals (Datta, 1995, 1997; Marini et al,
1992). Namely, REM sleep is believed to be generated by cholinergic pro-
cesses arising from brainstem strucrures (PPT and LDT) that mediate wide-
spread cortical activation via a dorsal pathway innervating the thalamus and
a ventral pathway innervating the basal forebrain {Steriade & McCarley,
2005).

A major finding from PET studies is the demonstration that fimbic and
paralimbic structures, including amygdaloid complexes, hippocampal forma-
tion, and anterior cingulate cortex, were consistently activated during REM
sleep in humans {Braun et al, 1997; Maquet et al, 1996; Nofzinger et al,
1997). This result is also in line with earlier studies in animals showing a
high regional glucose metabolism in the limbic system of rats {Ramm &
Frost, 1983) and cats (Lydic et al, 1991; Ramm & Frost, 1986). Amygdala
is known to play a key role in REM sleep modulation. For instance, in cats
the stimulation of the central nucleus of amygdaloid complexes, either by
electrical stimulation (Calvo, Badillo, Morales-Ramirez, & Palacios-Salas,
1987) or by injections of a cholinergic agonisc (Calvo, Simon-Arceo, &
Fernandez-Mas, 1996) enhances REM sleep activity. Besides the amygdala, the
hippocampal formation is also activated during REM sleep in some studies
{(Nofzinger et al, 1997), suggesting an activation of the whole Lmbic system
rather than the amygdala alone, ‘The activation of the amygdala and the hippo-
campus, which are both involved in memory processing (Bechara et al,, 1995),
also suggests memory consolidation processes during REM sleep. Numerous
data support the involvement of sleep in memory (for review, see Dang-Vu,
Desseilles, Peigneux, & Magquert, 2006; Maquet, 2001; Maquet, Smith, & Stick-
gold, 2003; Peigneux, Laureys, Delbeuck, & Maquet, 2001a; Rauchs, Desgranges,
Foret, & Eustache, 2005), but the relationships with dream content remain to
be demonstrated.

Activated cortical temporo-gccipital areas encompass the inferior temporal
cortex and the fusiform gyrus (Braun et al, 1997), which belong to visual
association areas (extrastriate cortex), but they do not include the primary
visual cortex (striate cortex). Furthermore, striate and extrastriate cortices
wete shown to be functionally dissociated during REM sleep (Braun et al,
1998): excrastriate cortex activation is significantly correlated with striace
cortex deactivadon during REM sleep, whereas their activities are usually
positively correlated during wakefulness. This dissociation between visual
association arcas and primary visual areas seems to be a hallmark of REM
sleep and has led Braun and colleagues to hypothesize that REM sleep allows

internal information processing (between extrastriate areas and their
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paralimbic projections, both activated during REM sleep) in a closed system
dissociated from interactions with the environment {via striate cortex and
prefrontal cortex, both deactivated during REM sleep) (Braun et al., 1998).

Deactivated areas during REM sleep were first found in the DLPF, the
precunens, the posterior cingulate cortex, and the parietal cortex (Braun ec al,
1997; Maquet et al,, 1996). A recent PET study, however, showed that only
parts of the parietal and DLPF cortices are hypoactive during REM sleep
when compared to wakefulness (Maquet et al,, 2005): the temporo-parietal
region, the inferior parietal lobule, and the inferior and middle frontal gyrus
of the DLPF. Conversely, activity in the superior parietal lobe and in the
superior and medial prefrontal cortex is not different from waking level.
The neurophysiological mechanisms underlying this funcrional segregation
are still hypothetical. The amygdala might play a role in this cortical map-
ping: in monkeys, the amygdala sends abundant projections to the extrastri-
ate and anterior cingulate cortices, which are activated during human REM
sleep, but sends only sparse or indirect projections to the parietal cortex and
DLPF, which are deactivated during REM sleep (Amaral & Price, 1984).
These data suggest that the amygdala might “orchestrate” cortical activity
during REM sleep. In line with this hypothesis, PET data also showed func-
tional interactions between the amygdala and the temporal cortex, whereby
amygdala activity was significantly and positively correlated witch activity in
the ipsilateral temporal cortex during REM sleep, but not during other states
of vigilance (Maquet & Phillips, 1998). One proposed function for this
amygdalo-cortical network may be the selective processing of emorionally-
relevant memories during REM sleep (Maquet et al., 1996).

In animals, rapid eye movements during REM sleep are closely related to
the occurrence of the so-called ponto-geniculo-occipital (PGO) waves. These
PGO waves are bioelectrical phasic potentials occurring during the transition
from non-REM sleep to REM sleep or during REM sleep itself (Callaway,
Lydic, Baghdoyan, & Hobson, 1987). They are observed at many locations
in the animal brain (Hobson, 1964), but most easily recorded in the pons
(Jouvet, 1967), the lateral geniculate bodies of the thalamus (Mikiten,
Niebyl, 8& Hendley, 1961) and the occipital cortex {Mouret, Jeannerod, &
Jouvet, 1963). PGO waves might have important functional roles, such as
the promotion of brain development and the facilitation of brain plasticity
(Datta, 1999). There is also some evidence that PGO waves may exist in
humans, as suggested by direct intracerebral recordings in epileptic patients
(Salzarule et al, 1975), surface EEG (Salzarule et al., 1975), and magnetoen-
cephalography (MEG) {Inoue, Saha, & Musha, 1999). A human PET study
also found correlations during REM sleep, but not during wakefulness,
between spontaneous eye movements and rCBF in the occipital cortex and
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the lateral geniculate bodies of the thalamus, giving further support for the
existence of PGO-like activities during REM sleep in humans (Peigneux,
et al,, 2001b). This finding was recently corroborated by a functional mag-
netic resonance imaging (fMRI) study (Wehele et al., 2003).

Opverall, neuroimaging studies have shown that the functional neuroanat-
omy {Braun et al, 1997; Maquet et al.,, 1996; Maquet et al, 2005; Nofzinger
et al., 1997) but also the functional interactions berween brain areas (Braun
et al, 1998; Maquet & Phillips, 1998) were significantly different during
REM sleep compared to wakefulness and to other sleep stages. These pat-
terns of activity contribute to build a model of REM sleep physiology inte-
grating human and animal data: (1) REM sleep is generated by processes
arising from the pons and projecting to the cortex via the thalamus and the
basal forebrain. (2) The limbic/paralimbic structures, mostly the amygdala,
may serve as important modulators of internally-generated cortical input.
(3) The hallmark of this segregated cortical activity is the activation of
temporo-occipital visual association areas, contrasting with DLPF and inferior
parietal deactivations. (4) The resvlting network may be shaped by PGO-like
activities and could underlie important functions such as brain plasticity and
memory.

DREAMING VIEWED FROM A NEUROIMAGING PERSPECTIVE:
INTEGRATION OF REM SLEEP CEREBRAL MAPPING
AND MAJOR DREAM FEATURES

The previous maps reflect some aspects of REM sleep physiology, but
may also convey information about the neural basis of dreaming Indeed,
the functional patterns of cerebral activity during REM sleep can be inter-
preted in the light of common features of dream content, and therefore
potentially account for the generation of oneiric activity (see Figure 5.1).

Dream reports usually include different sensory modalities, largely domi-
nated by visual (close to 100 percent) and audirory (40 to 60 percent) per-
cepts, whereas moverment and tactile sensations (15 to 30 percent) or smell
and taste (less than 1 percent) are much less frequent (Strauch, Meier, &
Foulkes, 1996). The occipito-temporal activation during REM sleep may
underpin these perceprual aspects of dreams, consistently dominated by
visual and auditory elements (Braun et al,, 1997). Accordingly, cessation of
visual dream imagery was reported for patients with occipito-temporal
lesions (Solms, 1997).

Dream content js also characterized by the prominence of emotions, and
especially negative emotions such as fear and anxiety (Strauch et al, 1996).
Responses to threatening stimuli or stressful situations are modulated by the
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amygdala during wakefulness (Sah, Faber, Lopez, 8 Power, 2003). The high
limbic—and amygdalar—activity during REM sleep may thus underlie the
emotional intensity occurring during dreams (Maquet et al, 1996). More-
over, PET data have shown positive functional interactions between amyg-
dala and occipito-temporal cortices during REM sleep (Maquet & Phillips,
1998), while a recent fMRI study has found a positive relationship between
the emotional load of visual stimuli and the functional activity in both
amygdala and infero-temporal cortex (Sabatinelli, Bradley, Fitzsimmons, &
Lang, 2005). Together, these data suggest thar the emotional experience dur-
ing dreams might involve specific brain networks encompassing the amyg-
dala and the occipito-temporal cortex. '

The regional hypoactivity patterns during REM sleep, and especially the
deactivation of parts of the prefrontal and parietal cortex (Maquet et al,
2005), have been proposed to explain several other dreaming features such
as the uncritical acceptance of bizarre dream content, the alteration in time
perception, the delusional belief of being awake during dreams, and the
amnesia at awakening (Hobson et al,, 1998). As discussed below, these deac-
tivations could also account for the discontinuity and incongruity of dream
content, the lack of control on the dreaming scenario, the fragmented recall
of dreaming episodic elements, the reduced sensitivity of the dreaming narra-
tive ro external information, and the lack of distinction berween first- and
third-person perspectives in mind representation during dreaming (Maquet
et al,, 2005).

The prefrontal cortex can be functionally divided in distinct subregions,
each of them underlying the monitoring of specific cognitive processes during
wakefulness (Koechlin, Ody, & Kouneiher, 2003). In this model, the DLPF
areas deactivated during REM sleep (Maquet et al., 2005) cotrespond to the
prefrontal subregions involved in the selection of stimulus-response associa-
tions according to contextual signals, past events, and internal goals. The
decreased activity of these areas would, therefore, prevent the brain from
supervising the meaningful integration and continuity of dream information
with respect to waking routines, physical rules, and social conventions. It
may also explain the dreamer’s failure to organize his/her mental representa-
tion toward specific goals or to control the flow of dream events.

During wakefulness, the retrieval of episodic memory, which refers to the
ability to recollect personally experienced events anchored within 2 particular
spatio-temporal context (Tulving, 1983), has been shown to involve the
activation of lateral and inferior prefrontal cortices (Buckner, Wheeler, &
Sheridan, 2001; Cabeza & Nyberg, 2000; Fletcher & Henson, 2001; Rugg
& Wilding, 2000; Rugg, Otten, & Henson, 2002), which are typically deac-
tivated during REM sleep (Maquet et al, 2005). It is indeed believed that
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prefrontal areas participate in the processing of information retrieved from
episodic memory; for instance, by checking its accuracy and completeness
(Maguet et al., 2005). The hypoactivity of these regions during REM sleep
is in line with the demonstration that, although 65 percent of dream reports
contain residues of previous waking activity, only 1.4 percent of them are
considered as representing the replay of full memory episodes (Fosse, Fosse,
Hobson, & Stickgold, 2003). In other words, the dreamer reactivates epi-
sodic elements in a fragmented fashion (probably via the activation of the
hippocampus and posterior cortical areas), but is unable to integrate the
details of past events into an identifiable life episode because of the deactiva-
tion of the DLPF (Magquet et al,, 2005; Schwartz, 2003).

The DLPF {inferior and middle frontal gyri) and the inferior parietal
lobule, both deactivated during REM sleep, are included in the ventral atten-
tional network (Corberta & Shulman, 2002). This network acts as an alert-
ing mechanism that is specialized in the detection of salient, unexpected,
behaviorally relevant stimuli and helps to reorient the focus of attention
toward the incoming stimulus (Corbetta, Kincade, Ollinger, McAvoy, &
Shulman, 2000). A relative quiescence of the ventral attentional nerwork
during REM sleep might be induced by the decrease of noradrenergic tone,
given that the locus coeruleus sends heavy projections to the inferior pariecal
cortex (Morrison & Foote, 1986) and also participates in selective attention,
especially to salient and unexpected stimuli (Aston-Jones & Rajkowski,
2000). These functional patterns then predict that the dream narrartive,
reported after awakening from REM sleep, would hardly be modified by
external stimulation, even if behaviorally relevant (Maquet et al, 2005). This
view is supported by observations describing that external stimuli delivered
during REM sleep are either ignored or automatically incorporated into the
dream narrative, instead of interrupting the flow of the dream storyline
(Burton, Harsh, & Badia, 1988; Foulkes, 1966).

The ability to attribute intentions, thoughts, and feelings to oneself and
to others is commonly referred to as the “Theory of Mind.” Instances of
mind representation appear in dreams: the dreaming mind creates characters
and attributes thoughts, emotions, and intentions to those characters (Kahn
& Hobson, 2005). Neuroimaging studies of theoty of mind casks during
wakefulness have demonstrated a consistent involvement of the medial pre-
frontal cortex (MPF) (Frith & Frich, 2003; Gallagher & Frith, 2003; Harris,
Todorov, & Fiske, 2005). While the DLPF is deactivated during REM sleep,
the MPF has been shown to remain as active during REM sleep as during
wakefulness (Maquet et al, 2005). This stands in contrast with its signifi-
cant deactivation during non-REM sleep (Dang-Vu et al, 2005; Maquet
et al, 1997; Maquet et al, 2005). The similar level of activity in the MPF
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during REM sleep and wakefulness could therefore contribute to the persis-
tence of the ability to represent others’ mind during REM sleep dreaming,
On the other hand, the inferior parietal lobule and temporo-parietal junc-
tion would be involved in the distinction of firse- versus third-person perspec-
tives in the representation of actions, thoughts, and emotions during
wakefulness (Chaminade & Decery, 2002; Farrer ct al, 2003; Ruby & Decery,
2001; Ruby & Decery, 2003, 2004). Contrasting with the MPF preserved
activity, the hypoactivity of these parietal areas would predict a decrease of the
abilicy to distinguish the perspective of others as compared to our own during
REM sleep and dreaming. Accordingly, dream reports show that the self can
participate to the dream scenario both in a first-person (the self sees and acts)
and in a third-person perspective (the dreamer sees the self acting in the
dream) (Magquet et al, 2005).

CONCLUSION

Over the last decade, neuroimaging studies have successfully described the
distribution of brain activity across the sleep-wake cycle. When compared to
non-REM sleep, REM sleep is characterized by an overall elevated level of
activity, together with a specific pattern of regional brain activations and
deactivations. This funcrional mapping of human REM sleep also allowed
confirming theories of REM sleep neurophysiology derived from animal
experiments. It has also been proposed that the cerebral correlates of REM
sleep could underpin some important dreaming characteristics, including the
predominance of threat-related emotions and visual percept, the loss of ori-
entational stability and volitional control, the fragmented episodic memory
recall, che reduced sensitivity to external relevant informartion, as well as the
possibility of attributing feelings and goals to other characters in the dream.

To further improve the accuracy of the neural correlates of dreaming,
future functional brain imaging studies should be combined with refined
neuropsychological analysis of dream reports (Schwartz & Magquet, 2002).
Dreams are indeed multifarious, often bizarre, and cannot be reduced to a
list of broad and typical sensory or cognitive features. Some specific and
bizarre but common dream features of normal hurnan sleep resemble clinical
signs of neuropsychological syndromes resulting from focal brain damages,
thus potentially predicting the topography of the corresponding brain fune-
tional changes (Schwartz & Maquet, 2002). On the basis of these observa-
tions, it has been proposed to quantify and categorize the dream narrative in
terms of different perceptual, emotional, or bizarre elements to provide use-
ful constraints to the analysis and interpretation of future REM sleep data
(Schwartz & Maquet, 2002). Perhaps a special type of dreaming during
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which the dreamer is conscious of being in a dream (“lucid dreaming”)
might provide an interesting test case for future neuroimaging studies
(LaBerge & DeGracia, 2000). The fact that lucid dreamers can remember to
perform predetermined actions during a dream might allow assessing the
neural correlates of a large variety of dreaming features. Non-REM sleep
dreaming should also be investigated in upcoming dedicated studies, and the
differences (or similarities) between REM on non-REM dreaming mentation
should be furcher clarified.

The reviewed neurophysiological and neuroimaging research on REM
sleep offers an increasingly detailed picture of the cerebral correlates of
dreaming, which may finally bring significanc insight into dreaming mecha-
nisms and possible functions.
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