
the corresponding results bear little relation to graphs that arise in
real-life situations, where edges are characteristically added with
some dependence on edges that are already present.

A more interesting class of networks, which has received much
recent interest, are so-called “small networks” in which most
nodes are not directly connected to each other, but can be
reached from every other by a small number of hops. This sort
of network is often explained in the popular literature via the
“Kevin Bacon Game” in which the nodes are actors and the
edges connecting them represent their having appeared in
the same movie. The question is then posed of how many edges
one must follow (how many nodes one must hop between) to
get from Kevin Bacon to any given actor. Each actor then gets a
“Bacon number” which represents how many hops away from
Kevin Bacon they are. Remarkably, most successful actors have
a Bacon number less than or equal to 5. Such networks, in the
context of the four-quadrant human decision-making map
(Behrens & Sporns 2012), would represent a trend toward the
east –more sociality, and more chances to connect lead naturally
to such networks. Such networks have many interesting properties
including a tendency to have a small number of nodes with very
high degrees of connectivity – something that can be looked for
in (big) data. Similar patterns appear in anatomical connections
in the brain (Sporns et al. 2002) and in synchronization networks
of cortical neurons (Yu et al. 2008).

Various mechanisms can give rise to such networks, the most
popular being the Watts-Strogatz (W-S) mechanism (Watts &
Strogatz 1998), which is constructed by iteratively rewiring a
pre-existing graph (something which might be expected to
model evolution on a pre-existing network), and the Barabási–
Albert (BA) model (Barabási & Albert 1999), which is based on
the notion of preferential attachment, where new nodes are
added with connections made preferably to those which already
are more connected. The BA model, for example, has been
used to model the World Wide Web (www) where one might
well expect that more people would add new links to a more
popular (more linked to) site than to one less used. A general
review can be found in Albert and Barabási (2002).

The BA model also gives rise to an interesting distinction from
the W-S mechanism in that it gives rise to power-law or “scale-
free” networks where the number of nodes with some number
of connections depends as a power of that number. This gives
rise to long-tailed distributions (Behrens & Sporns 2012).
Indeed, this behavior is found by Bentley et al. in their Figure 1
(target article, sect. 2). Again, this sort of behavior can be
sought in big datasets and can give valuable information about
the possible origin of a given network configuration. So far we
have assumed a deviation from randomness (an appearance of
structure) due to fairly deterministic processes where, even if
edges appear randomly, their probabilities depend deterministi-
cally on other factors. Relatively little is known if one weakens
this dependence by the addition of random noise.

As an aside, we note that the north–south axis is described as
“the extent to which there is a transparent correspondence
between an individual’s decision and the consequence of that
decision” (target article, sect. 2, para. 4). If we interpret this as a
weakening of a direct cause-effect relationship, we suggest that
this might indeed be modeled as noise – something that has
been much less studied in the physics community, yet which
could surely be added to models which have been considered,
in some cases perhaps analytically, but also certainly via computer
simulations. Spin-glasses are often used to model network
dynamics (Binder & Young 1986) where a temperature-like par-
ameter represents noise, but this work tends to be done to rep-
resent correlations between activities at nodes rather than on
the dynamics which drives the formation of edges – that is, the
structure of the network itself.

Big-data approaches from the social sciences are already motiv-
ating significant new developments in characterizing brain net-
works. Over recent years, connectomic analyses of brain activity

in large datasets have elucidated the network architecture of the
brain (Behrens & Sporns 2012; Sporns 2012; Supekar & Menon
2012) and identified fundamental principles of the brain’s graphi-
cal organization (Bullmore & Sporns 2012). New approaches
promise to shed light on brain networks implicated during specific
cognitive tasks, such as altered network interrelationships during
volition regulation of emotion (Sripada et al. 2013). Such brain
mechanisms involved in specific cognitive tasks might ultimately
be helpful in understanding brain–behavior responses to real
and increasingly social stimuli – for example, parents responding
to baby-cries (Swain & Lorberbaum 2008; Swain et al. 2004;
2011), the complex array of social responses involved in parenting
(Swain 2011) – and to broader societally directed behaviors such
as altruism (Swain et al. 2012). Such approaches may be helpful
in understanding underlying mechanisms of psychiatric disorders
such as obsessive-compulsive disorder (Leckman et al. 2004;
Mayes et al. 2005), generalized social anxiety, and autism that
involve pervasively abnormal functioning in social domains.
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Abstract: While Bentley et al.’s model is very appealing, in this
commentary we argue that researchers interested in big data and
collective behavior, including the way humans make decisions, must
account for the emotional factor. We investigate how daily choice of
activities is influenced by emotions. Results indicate that mood
significantly predicts people’s decisions about what to do next, stressing
the importance of emotional state on decision-making.

Bentley et al. propose that decision-making can be understood
along two dimensions. The first dimension represents the
degree to which an agent makes a decision independently
versus one that is socially influenced. The second dimension rep-
resents the degree of transparency in the payoffs and risks associ-
ated with the decisions agents make. While Bentley et al.’s model
is very appealing, we argue that emotions, a key element to under-
stand the way humans make decisions, are missing.
From early theorizing by William James, to Antonio Damasio’s

work on somatic markers, decades of research consistently have
shown that emotions play a central role in the decision-making
process (see, e.g., Bechara & Damasio 2005; Loewenstein
2000). For instance, in economic decisions, fear leads to risk-
averse choices, whereas anger leads to risk-seeking choices
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(Lerner & Keltner 2001). In medical decisions, positive affect
improves physicians’ clinical reasoning and diagnosis (Estrada
et al. 1997). In ethical decisions, social emotions such as guilt
can lead individuals to choose ethically (Steenhaut & Van
Kenhove 2006). These studies, among many others, strongly
demonstrate that emotions shape most of our decisions. Research-
ers in microeconomics, health, or ethics are already taking
emotions into account. It is now time for big-data and collective
behavior researchers to recognize the importance of the emotion-
al factor in the decision-making process.

In this commentary, we illustrate the importance of emotions to
predict people’s behavior using the example of a big dataset
derived from an ongoing large-scale smartphone-based, experi-
ence-sampling project (available at: http://58sec.fr/). Specifically,
we show that the happiness that individuals experience at time t
reliably predicts the type of activities they choose to engage in
at time t+1.

Subjects voluntarily enroll in the experiment by downloading
and installing the mobile application “58sec”. They are then pre-
sented with questionnaires at random times throughout the
day – henceforth referred to as tests. Random sampling is
ensured through a notification system that does not require
users to be connected to the Internet. The minimum time
between two tests is set to one hour to avoid large artifactual
auto-correlations between answers to the same question in con-
secutive tests. At each test, participants are asked to rate their
current mood on a scale from 0 (very unhappy) to 100 (very
happy) and to report which activity they are currently engaged
in, among other questions. Activities can be selected from a list
of 25 non-mutually exclusive choices that, among other activities,
include doing sports, working, resting, praying/meditating, shop-
ping, and commuting.

To illustrate the dynamic between emotion and decision-
making, we randomly selected 5,000 people from our database
and investigated how their daily choice of activities (e.g.,
whether one decides to spend the evening working out or watch-
ing TV) is influenced by their emotion. Specifically, we tested how
much mood reported within one test (time t) predicts the activity
reported within the next test (time t+1). For each possible activity,
a logistic regression model is fitted for the probability of the
activity (dependent variable) as a function of previously reported
mood (independent variable). Mood at time t may be correlated
to mood at time t+1, which itself correlates with the activity at
time t+1. To cross out this indirect effect of emotion on decision,
mood at time t+1 is included in the model as a covariate.
Emotions closer in time to a decision may better predict its
outcome. To capture this notion, we included an interaction
term between the (random) time between the two tests and
mood at time t.

Big datasets allow many variables to be compared simul-
taneously without diluting the effect of interest in the correction
required to account for the multiple comparisons. For the same
underlying effect size, the p-value will indeed decrease as the

number of data points increase. More data points therefore
reduce the number of Type II errors (false negatives), for a con-
stant Type I error rate (false findings). Accordingly, the threshold
on the p-value can be reduced from its typical value (e.g., 0.05) to
also decrease the number of findings that are false. In this study,
we set the significance threshold at p < 0.001 to increase the con-
fidence in our findings.

Significance testing was carried out on the coefficient (Betapred)
of mood at time t in the prediction of each action at time t+1. The
resulting 25 p-values were corrected for multiple comparisons
using Bonferroni correction. Each of the 5,000 subjects partici-
pated in an average of 13.1 tests. Those subjects who participated
in only one test were discarded since their test results did not
convey information about the prediction of emotion on decision.
This gave rise to a total of 59,663 data points from which the logis-
tic regression could be fitted.

Five activities were significantly predicted by mood at the p =
0.001 threshold after Bonferroni correction (Fig. 1): working
(Betapred = 0.48, p < 10−12), resting (Betapred = 0.38, p < 2 × 10−4),
eating (Betapred =−0.34, p < 5 × 10−4), doing sports (Betapred =
−1.3, p < 10−9), and leisure (Betapred =−0.81, p < 3 × 10−4). These
results indicate that mood significantly predicts people’s decisions
about what to do next, stressing the importance of emotion on
decision-making.

Big data and large-scale experience sampling through pervasive
technologies offer unprecedented opportunities to understand
collective behaviors. Such methods are particularly suited to study
collective behavior as its causes often involve complex interactions
between sensitive variables. One archetypal example of such collec-
tive behavior is decision-making which involves independence of
the agent, transparency of the payoffs, and emotional state.
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Abstract: We apply Bentley et al.’s theoretical framework to better
understand gender discrimination in online labor markets. Although
such settings are designed to encourage employer behavior in the

Figure 1 (Taquet et al.). Five activities are significantly predicted by mood. The figure presents the data in red (aggregated by mood in
bins of 2 levels: 0–1, 2–3, … , 99–100) and the corresponding logistic curve in blue, corrected for mood at time t+1 and the interaction
between mood at time t and time between tests. The shaded area corresponds to two standard errors above and two standard errors below
the curve. A color version of this image is available at http://dx.doi.org/10.1017/S0140525X1300191X.
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